Осевая симметрия в живой и неживой природе. Презентация Виды симметрии

На этом уроке мы рассмотрим ещё одну характеристику некоторых фигур - осевую и центральную симметрию. С осевой симметрией мы сталкиваемся каждый день, глядя в зеркало. Центральная симметрия очень часто встречается в живой природе. Вместе с тем, фигуры, которые обладают симметрией, имеют целый ряд свойств. Кроме того, впоследствии мы узнаем, что осевая и центральная симметрии являются видами движений, с помощью которых решается целый класс задач.

Данный урок посвящён осевой и центральной симметрии.

Определение

Две точки и называются симметричными относительно прямой , если:

На Рис. 1 изображены примеры симметричных относительно прямой точек и , и .

Рис. 1

Отметим также тот факт, что любая точка прямой симметрична сама себе относительно этой прямой.

Симметричными относительно прямой могут быть и фигуры.

Сформулируем строгое определение.

Определение

Фигура называется симметричной относительно прямой , если для каждой точки фигуры симметричная ей относительно этой прямой точка также принадлежит фигуре. В этом случае прямая называется осью симметрии . Фигура при этом обладает осевой симметрией .

Рассмотрим несколько примеров фигур, обладающих осевой симметрией, и их оси симметрии.

Пример 1

Угол обладает осевой симметрией. Осью симметрии угла является биссектриса. Действительно: опустим из любой точки угла перпендикуляр к биссектрисе и продлим его до пересечения с другой стороной угла (см. Рис. 2).

Рис. 2

(так как - общая сторона, (свойство биссектрисы), а треугольники - прямоугольные). Значит, . Поэтому точки и симметричны относительно биссектрисы угла.

Из этого следует, что и равнобедренный треугольник обладает осевой симметрии относительно биссектрисы (высоты, медианы), проведённой к снованию.

Пример 2

Равносторонний треугольник обладает тремя осями симметрии (биссектрисы/медианы/высоты каждого из трёх углов (см. Рис. 3).

Рис. 3

Пример 3

Прямоугольник обладает двумя осями симметрии, каждая из которых проходит через середины двух его противоположных сторон (см. Рис. 4).

Рис. 4

Пример 4

Ромб также обладает двумя осями симметрии: прямые, которые содержат его диагонали (см. Рис. 5).

Рис. 5

Пример 5

Квадрат, являющийся одновременно ромбом и прямоугольником, обладает 4 осями симметрии (см. Рис. 6).

Рис. 6

Пример 6

У окружности осью симметрии является любая прямая, проходящая через её центр (то есть содержащая диаметр окружности). Поэтому окружность имеет бесконечно много осей симметрии (см. Рис. 7).

Рис. 7

Рассмотрим теперь понятие центральной симметрии .

Определение

Точки и называются симметричными относительно точки , если: - середина отрезка .

Рассмотрим несколько примеров: на Рис. 8 изображены точки и , а также и , которые являются симметричными относительно точки , а точки и не являются симметричными относительно этой точки.

Рис. 8

Некоторые фигуры являются симметричными относительно некоторой точки. Сформулируем строгое определение.

Определение

Фигура называется симметричной относительно точки , если для любой точки фигуры точка, симметричная ей, также принадлежит данной фигуре. Точка называется центром симметрии , а фигура обладает центральной симметрией .

Рассмотрим примеры фигур, обладающих центральной симметрией.

Пример 7

У окружности центром симметрии является центр окружности (это легко доказать, вспомнив свойства диаметра и радиуса окружности) (см. Рис. 9).

Рис. 9

Пример 8

У параллелограмма центром симметрии является точка пересечения диагоналей (см. Рис. 10).

Рис. 10

Решим несколько задач на осевую и центральную симметрию.

Задача 1.

Сколько осей симметрии имеет отрезок ?

Отрезок имеет две оси симметрии. Первая из них - это прямая, содержащая отрезок (так как любая точка прямой симметрична сама себе относительно этой прямой). Вторая - серединный перпендикуляр к отрезку, то есть прямая, перпендикулярная отрезку и проходящая через его середину.

Ответ: 2 оси симметрии.

Задача 2.

Сколько осей симметрии имеет прямая ?

Прямая имеет бесконечно много осей симметрии. Одна из них - это сама прямая (так как любая точка прямой симметрична сама себе относительно этой прямой). А также осями симметрии являются любые прямые, перпендикулярные данной прямой.

Ответ: бесконечно много осей симметрии.

Задача 3.

Сколько осей симметрии имеет луч ?

Луч имеет одну ось симметрии, которая совпадает с прямой, содержащей луч (так как любая точка прямой симметрична сама себе относительно этой прямой).

Ответ: одна ось симметрии.

Задача 4.

Доказать, что прямые, содержащие диагонали ромба, являются его осями симметрии.

Доказательство:

Рассмотрим ромб . Докажем, к примеру, что прямая является его осью симметрии. Очевидно, что точки и являются симметричными сами себе, так как лежат на этой прямой. Кроме того, точки и симметричны относительно этой прямой, так как . Выберем теперь произвольную точку и докажем, что симметричная ей относительно точка также принадлежит ромбу (см. Рис. 11).

Рис. 11

Проведём через точку перпендикуляр к прямой и продлим его до пересечения с . Рассмотрим треугольники и . Эти треугольники прямоугольные (по построению), кроме того, в них: - общий катет, а (так как диагонали ромба являются его биссектрисами). Значит, эти треугольники равны: . Значит, равны и все их соответствующие элементы, поэтому: . Из равенства этих отрезков следует то, что точки и являются симметричными относительно прямой . Это означает, что является осью симметрии ромба. Аналогично можно доказать этот факт и для второй диагонали.

Доказано.

Задача 5.

Доказать, что точка пересечения диагоналей параллелограмма является его центром симметрии.

Доказательство:

Рассмотрим параллелограмм . Докажем, что точка является его центром симметрии. Очевидно, что точки и , и являются попарно симметричными относительно точки , так как диагонали параллелограмма точкой пересечения делятся пополам. Выберем теперь произвольную точку и докажем, что симметричная ей относительно точка также принадлежит параллелограмму (см. Рис. 12).

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от расположения мебели до стрижки волос.

Просто имейте в виду: как только вы осознаете это, вы, вероятно, испытаете непреодолимое желание искать симметрию во всем, что видите.

(Всего 10 фото)

Спонсор поста: Программа для скачивания музыки ВКонтакте : Новая версия программы «Лови в контакте» предоставляет возможность легко и быстро скачивать музыку и видео, размещенные пользователями, со страниц самой известной социальной сети vkontakte.ru.

1. Брокколи романеско

Возможно увидев брокколи романеско в магазине, вы подумали, что это ещё один образец генномодифицированного продукта. Но на самом деле это ещё один пример фрактальной симметрии природы. Каждое соцветие брокколи имеет рисунок логарифмической спирали. Романеско внешне похожа на брокколи, а по вкусу и консистенции – на цветную капусту. Она богата каротиноидами, а также витаминами С и К, что делает её не только красивой, но и здоровой пищей.

На протяжении тысяч лет люди удивлялись идеальной гексагональной форме сот и спрашивали себя, как пчелы могут инстинктивно создать форму, которую люди могут воспроизвести только с помощью циркуля и линейки. Как и почему пчелы имеют страстное желание создавать шестиугольники? Математики считают, что это идеальная форма, которая позволяет им хранить максимально возможное количество меда, используя минимальное количество воска. В любом случае, все это продукт природы, и это чертовски впечатляет.

3. Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии, известной как последовательность Фибоначчи. Последовательность Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если бы мы не спешили и подсчитали количество семян в подсолнухе, то мы бы обнаружили, что количество спиралей растет по принципам последовательности Фибоначчи. В природе есть очень много растений (в том числе и брокколи романеско), лепестки, семена и листья которых отвечают этой последовательности, поэтому так трудно найти клевер с четырьмя листочками.

Но почему подсолнечник и другие растения соблюдают математические правила? Как и шестиугольники в улье, все это – вопрос эффективности.

4. Раковина Наутилуса

Помимо растений, некоторые животные, например Наутилус, отвечают последовательности Фибоначчи. Раковина Наутилуса закручивается в «спираль Фибоначчи». Раковина пытается поддерживать одну и ту же пропорциональную форму, что позволяет ей сохранять её на протяжении всей жизни (в отличие от людей, которые меняют пропорции на протяжении жизни). Не все Наутилусы имеют раковину, выстроенную по правилам Фибоначчи, но все они отвечают логарифмической спирали.

Прежде, чем вы позавидуете моллюскам-математикам, вспомните, что они не делают этого специально, просто такая форма наиболее рациональна для них.

5. Животные

Большинство животных имеют двустороннюю симметрию, что означает, что они могут быть разделены на две одинаковых половинки. Даже люди обладают двусторонней симметрией, и некоторые ученые полагают, что симметрия человека является наиболее важным фактором, который влияет на восприятие нашей красоты. Другими словами, если у вас однобокое лицо, то остается надеяться, что это компенсируется другими хорошими качествами.

Некоторые доходят до полной симметрии в стремлении привлечь партнера, например павлин. Дарвин был положительно раздражен этой птицей, и написал в письме, что «Вид перьев в хвосте павлина, всякий раз, когда я смотрю на него, делает меня больным!» Дарвину, хвост казался обременительным и не имеющим эволюционного смысла, так как он не соответствовал его теории «выживания наиболее приспособленных». Он был в ярости, пока не придумал теорию полового отбора, которая утверждает, что животные развивают определенные функции, чтобы увеличить свои шансы на спаривание. Поэтому павлины имеют различные приспособления для привлечения партнерши.

Есть около 5000 типов пауков, и все они создают почти идеальное круговое полотно с радиальными поддерживающими нитями почти на равном расстоянии и спиральной тканью для ловли добычи. Ученые не уверены, почему пауки так любят геометрию, так как испытания показали, что круглое полотно не заманит еду лучше, чем полотно неправильной формы. Ученые предполагают, что радиальная симметрия равномерно распределяет силу удара, когда жертва попадает в сети, в результате чего получается меньше разрывов.


Дайте паре обманщиков доску, косилки и спасительную темноту, и вы увидите, что люди тоже создают симметричные формы. Из-за того, что круги на полях отличаются сложностью дизайна и невероятной симметрией, даже после того, как создатели кругов признались и продемонстрировали свое мастерство, многие люди до сих пор верят, что это сделали космические пришельцы.

По мере усложнения кругов все больше проясняется их искусственное происхождение. Нелогично предполагать, что пришельцы будут делать свои сообщения все более трудными, когда мы не смогли расшифровать даже первые из них.

Независимо от того, как они появились, круги на полях приятно рассматривать, главным образом потому, что их геометрия впечатляет.


Даже такие крошечные образования, как снежинки, регулируются законами симметрии, так как большинство снежинок имеет шестигранную симметрию. Это происходит в частности из-за того, как молекулы воды выстраиваются, когда затвердевают (кристаллизуются). Молекулы воды приобретают твердое состояние, образуя слабые водородные связи, они выравниваются в упорядоченном расположении, которое уравновешивает силы притяжения и отталкивания, формируя гексагональную форму снежинки. Но при этом каждая снежинка симметрична, но ни одна снежинка не похожа на другую. Это происходит потому, что падая с неба, каждая снежинка испытывает уникальные атмосферные условия, которые заставляют её кристаллы располагаться определенным образом.

9. Галактика Млечный Путь

Как мы уже видели, симметрия и математические модели существуют почти везде, но разве эти законы природы ограничиваются нашей планетой? Очевидно, нет. Недавно открыли новую секцию на краю Галактики Млечного Пути, и астрономы считают, что галактика представляет собой почти идеальное зеркальное отражение себя.

10. Симметрия Солнца-Луны

Если учесть, что Солнце имеет диаметр 1,4 млн. км, а Луна – 3474 км, кажется почти невозможным то, что Луна может блокировать солнечный свет и обеспечивать нам около пяти солнечных затмений каждые два года. Как это получается? Так совпало, что наряду с тем, что ширина Солнца примерно в 400 раз больше, чем Луна, Солнце также в 400 раз дальше. Симметрия обеспечивает то, что Солнце и Луна получаются одного размера, если смотреть с Земли, и поэтому Луна может закрыть Солнце. Конечно, расстояние от Земли до Солнца может увеличиваться, поэтому иногда мы видим кольцевые и неполные затмения. Но каждые один-два года происходит точное выравнивание, и мы становимся свидетелями захватывающих событий, известных как полное солнечное затмение. Астрономы не знают, как часто встречается такая симметрия среди других планет, но они думают, что это довольно редкое явление. Тем не менее, мы не должны предполагать, что мы особенные, так как все это дело случая. Например, каждый год Луна отдаляется примерно на 4 см от Земли, это означает, что миллиарды лет назад каждое солнечное затмение было бы полным затмением. Если и дальше все пойдет так, то полные затмения, в конце концов, исчезнут, и это будет сопровождаться исчезновением кольцевых затмений. Получается, что мы просто находимся в нужном месте в нужное время, чтобы увидеть это явление.

(означает «соразмерность») — свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под «симметрией» понимают всякую правильность во внутреннем строении тела или фигуры.

Центральная симметрия — симметрия относительно точки.

относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры.

В одномерном пространстве (на прямой) центральная симметрия является зеркальной симметрией.

На плоскости (в 2-мерном пространстве) симметрия с центром А представляет собой поворот на 180 градусов с центром А. Центральная симметрия на плоскости, как и поворот, сохраняет ориентацию.

Центральную симметрию в трёхмерном пространстве называют также сферической симметрией. Её можно представить как композицию отражения относительно плоскости, проходящей через центр симметрии, с поворотом на 180° относительно прямой, проходящей через центр симметрии и перпендикулярной вышеупомянутой плоскости отражения.

В 4-мерном пространстве центральную симметрию можно представить как композицию двух поворотов на 180° вокруг двух взаимно перпендикулярных плоскостей, проходящих через центр симметрии.

Осевая симметрия — симметрия относительно прямой.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры.

Осевая симметрия имеет два определения:

- Отражательная симметрия.

В математике осевая симметрия — вид движения (зеркального отражения), при котором множеством неподвижных точек является прямая, называемая осью симметрии. Например, плоская фигура прямоугольник в пространстве осимметрична и имеет 3 оси симметрии, если это не квадрат.

- Вращательная симметрия.

В естественных науках под осевой симметрией понимают вращательную симметриею, относительно поворотов вокруг прямой. При этом тела называют осесимметричными, если они переходят в себя при любом повороте вокруг этой прямой. В этом случае, прямоугольник не будет осесимметричным телом, но конус будет.

Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля.

С симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. Фасады многих зданий обладают осевой симметрией. В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например зубчатые колеса.

С древних времен человек выработал представления о красоте. Красивы все творения природы. По-своему прекрасны люди, восхитительны животные и растения. Радует взор зрелище драгоценного камня или кристалла соли, сложно не любоваться снежинкой или бабочкой. Но почему так происходит? Нам кажется правильным и завершенным вид объектов, правая и левая половина которых выглядит одинаково, как в зеркальном отражении.

Видимо, первыми о сути красоты задумывались люди искусства. Древние скульпторы, изучавшие строение человеческого тела, еще в V веке до н.э. стали применять понятие «симметрия». Это слово имеет греческое происхождение и означает гармоничность, пропорциональность и похожесть расположения составляющих частей. Платон утверждал, что прекрасным может быть лишь то, что симметрично и соразмерно.

В геометрии и математике рассматриваются три вида симметрии: осевая симметрия (относительно прямой), центральная (относительно точки) и зеркальная (относительно плоскости).

Если каждая из точек объекта имеет в пределах него свое точное отображение относительно его центра - имеет место центральная симметрия. Ее примером являются такие геометрические тела, как цилиндр, шар, правильная призма и т.д.

Осевая симметрия точек относительно прямой предусматривает, что эта прямая пересекает середину отрезка, соединяющего точки, и перпендикулярна ему. Примеры биссектриса неразвернутого угла равнобедренного треугольника, любая прямая, проведенная через центр окружности, и т.д. Если свойственна осевая симметрия, определение зеркальных точек можно наглядно представить, просто перегнув ее по оси и сложив равные половинки «лицом к лицу». Искомые точки при этом соприкоснутся.

При зеркальной симметрии точки объекта расположены одинаково относительно плоскости, что проходит через его центр.

Природа мудра и рациональна, поэтому почти все ее творения имеют гармоничное строение. Это относится и к живым существам, и к неодушевленным объектам. Для строения большинства форм жизни характерен один из трех видов симметрии: двусторонняя, лучевая или шаровидная.

Чаще всего осевая может наблюдаться у растений, развивающихся перпендикулярно поверхности почвы. В этом случае симметричность является результатом поворота идентичных элементов вокруг общей оси, находящейся в центре. Угол и частота их расположения могут быть разными. Примером служат деревья: ель, клен и другие. У некоторых животных осевая симметрия тоже встречается, но это бывает реже. Конечно, природе редко присуща математическая точность, но похожесть элементов организма все равно поразительна.

Биологами чаще рассматривается не осевая симметрия, а двусторонняя (билатеральная). Ее примером могут служить крылья бабочки или стрекозы, листья растений, лепестки цветов и т.д. В каждом случае правая и левая части живого объекта равны и представляют собой зеркальное отображение друг друга.

Шаровидная симметрия характерна для плодов многих растений, для некоторых рыб, моллюсков и вирусов. А примерами лучевой симметрии являются некоторые виды червей, иглокожие.

В глазах человека несимметричность чаще всего ассоциируется с неправильностью или ущербностью. Поэтому в большинстве творений людских рук прослеживается симметричность и гармония.

На этом уроке мы рассмотрим ещё одну характеристику некоторых фигур - осевую и центральную симметрию. С осевой симметрией мы сталкиваемся каждый день, глядя в зеркало. Центральная симметрия очень часто встречается в живой природе. Вместе с тем, фигуры, которые обладают симметрией, имеют целый ряд свойств. Кроме того, впоследствии мы узнаем, что осевая и центральная симметрии являются видами движений, с помощью которых решается целый класс задач.

Данный урок посвящён осевой и центральной симметрии.

Определение

Две точки и называются симметричными относительно прямой , если:

На Рис. 1 изображены примеры симметричных относительно прямой точек и , и .

Рис. 1

Отметим также тот факт, что любая точка прямой симметрична сама себе относительно этой прямой.

Симметричными относительно прямой могут быть и фигуры.

Сформулируем строгое определение.

Определение

Фигура называется симметричной относительно прямой , если для каждой точки фигуры симметричная ей относительно этой прямой точка также принадлежит фигуре. В этом случае прямая называется осью симметрии . Фигура при этом обладает осевой симметрией .

Рассмотрим несколько примеров фигур, обладающих осевой симметрией, и их оси симметрии.

Пример 1

Угол обладает осевой симметрией. Осью симметрии угла является биссектриса. Действительно: опустим из любой точки угла перпендикуляр к биссектрисе и продлим его до пересечения с другой стороной угла (см. Рис. 2).

Рис. 2

(так как - общая сторона, (свойство биссектрисы), а треугольники - прямоугольные). Значит, . Поэтому точки и симметричны относительно биссектрисы угла.

Из этого следует, что и равнобедренный треугольник обладает осевой симметрии относительно биссектрисы (высоты, медианы), проведённой к снованию.

Пример 2

Равносторонний треугольник обладает тремя осями симметрии (биссектрисы/медианы/высоты каждого из трёх углов (см. Рис. 3).

Рис. 3

Пример 3

Прямоугольник обладает двумя осями симметрии, каждая из которых проходит через середины двух его противоположных сторон (см. Рис. 4).

Рис. 4

Пример 4

Ромб также обладает двумя осями симметрии: прямые, которые содержат его диагонали (см. Рис. 5).

Рис. 5

Пример 5

Квадрат, являющийся одновременно ромбом и прямоугольником, обладает 4 осями симметрии (см. Рис. 6).

Рис. 6

Пример 6

У окружности осью симметрии является любая прямая, проходящая через её центр (то есть содержащая диаметр окружности). Поэтому окружность имеет бесконечно много осей симметрии (см. Рис. 7).

Рис. 7

Рассмотрим теперь понятие центральной симметрии .

Определение

Точки и называются симметричными относительно точки , если: - середина отрезка .

Рассмотрим несколько примеров: на Рис. 8 изображены точки и , а также и , которые являются симметричными относительно точки , а точки и не являются симметричными относительно этой точки.

Рис. 8

Некоторые фигуры являются симметричными относительно некоторой точки. Сформулируем строгое определение.

Определение

Фигура называется симметричной относительно точки , если для любой точки фигуры точка, симметричная ей, также принадлежит данной фигуре. Точка называется центром симметрии , а фигура обладает центральной симметрией .

Рассмотрим примеры фигур, обладающих центральной симметрией.

Пример 7

У окружности центром симметрии является центр окружности (это легко доказать, вспомнив свойства диаметра и радиуса окружности) (см. Рис. 9).

Рис. 9

Пример 8

У параллелограмма центром симметрии является точка пересечения диагоналей (см. Рис. 10).

Рис. 10

Решим несколько задач на осевую и центральную симметрию.

Задача 1.

Сколько осей симметрии имеет отрезок ?

Отрезок имеет две оси симметрии. Первая из них - это прямая, содержащая отрезок (так как любая точка прямой симметрична сама себе относительно этой прямой). Вторая - серединный перпендикуляр к отрезку, то есть прямая, перпендикулярная отрезку и проходящая через его середину.

Ответ: 2 оси симметрии.

Задача 2.

Сколько осей симметрии имеет прямая ?

Прямая имеет бесконечно много осей симметрии. Одна из них - это сама прямая (так как любая точка прямой симметрична сама себе относительно этой прямой). А также осями симметрии являются любые прямые, перпендикулярные данной прямой.

Ответ: бесконечно много осей симметрии.

Задача 3.

Сколько осей симметрии имеет луч ?

Луч имеет одну ось симметрии, которая совпадает с прямой, содержащей луч (так как любая точка прямой симметрична сама себе относительно этой прямой).

Ответ: одна ось симметрии.

Задача 4.

Доказать, что прямые, содержащие диагонали ромба, являются его осями симметрии.

Доказательство:

Рассмотрим ромб . Докажем, к примеру, что прямая является его осью симметрии. Очевидно, что точки и являются симметричными сами себе, так как лежат на этой прямой. Кроме того, точки и симметричны относительно этой прямой, так как . Выберем теперь произвольную точку и докажем, что симметричная ей относительно точка также принадлежит ромбу (см. Рис. 11).

Рис. 11

Проведём через точку перпендикуляр к прямой и продлим его до пересечения с . Рассмотрим треугольники и . Эти треугольники прямоугольные (по построению), кроме того, в них: - общий катет, а (так как диагонали ромба являются его биссектрисами). Значит, эти треугольники равны: . Значит, равны и все их соответствующие элементы, поэтому: . Из равенства этих отрезков следует то, что точки и являются симметричными относительно прямой . Это означает, что является осью симметрии ромба. Аналогично можно доказать этот факт и для второй диагонали.

Доказано.

Задача 5.

Доказать, что точка пересечения диагоналей параллелограмма является его центром симметрии.

Доказательство:

Рассмотрим параллелограмм . Докажем, что точка является его центром симметрии. Очевидно, что точки и , и являются попарно симметричными относительно точки , так как диагонали параллелограмма точкой пересечения делятся пополам. Выберем теперь произвольную точку и докажем, что симметричная ей относительно точка также принадлежит параллелограмму (см. Рис. 12).

Поделитесь с друзьями или сохраните для себя:

Загрузка...